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Gradient Hydroxyapatite Chromatography with Small
Sample Loads. I. Fundamental Theory

TSUTOMU KAWASAKI

LABORATOIRE DE GENETIQUE MOLECULAIRE
INSTITUT DE RECHERCHE EN BIOLOGIE MOLECULAIRE
FACULTE DES SCIENCES

PARIS 5, FRANCE

Abstract

On the basis of experimental data, it can be deduced that, on a hydroxyapatite
column, the effect of thermodynamic longitudinal diffusion of molecules is
“hidden” within diffusion occurring due to the heterogeneity in the flow rate
of the solution. This can be assumed to occur caused by the heterogeneity in
interspaces among hydroxyapatite crystals packed in the column. The chro-
matographic process is virtually a quasi-static process. By taking into account
the longitudinal diffusion in the column, a theory of hydroxyapatite chromato-
graphy was developed for small sample loads for the linear gradient elution.
The chromatographic mechanisms are fundamentally different between
gradient and stepwise chromatographies. No theories that have been developed
over many years for stepwise chromatography are applicable to gradient
chromatography. Relations of the present theory to both classical ““equilibrium™
and recent “‘rate” theories are discussed.

INTRODUCTION

The chromatographic behavior on hydroxyapatite (HA) columns of any
single component in a mixture is independent of the other components
with small sample loads. The width of the chromatographic peak of a
single component is independent of the sample load; it is the height of the
peak that is proportional to the load. These facts have been verified experi-
mentally (/). A theory was developed (2-6) for the case of small sample
loads in a linear molarity gradient of competing ions (for competing
ions, see below). In this theory, however, the effect of the longitudinal
molecular diffusion in the column was not taken into consideration.
(In Ref. 4, this effect is partially considered, however. For some comment
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on Ref. 4, see Ref. 7, Appendix I1.) The purpose of the present paper
and a subsequent paper (8) is to extend the earlier theory (2-6) to a theory
in which account is taken of this effect. In a subsequent paper (9) the
present theory (and the theory in Ref. 8) will be confirmed experimentally.

Usually the sample initially adsorbed at the top of the column forming
a narrow band is eluted from the column by increasing the ion concentra-
tion of the buffered solvent (in many instances sodium or potassium
phosphate buffer, pH = 6.8) stepwise or gradually; a linear molarity
gradient is often applied. In gradient elution, when the ion concentration
reaches some value, the band begins to broaden and to migrate. It is
common practice that the chromatogram appears over a considerably
large volume of the solvent. For instance, in a series of experiments with
lysozyme where the initial band at the column top has a width much less
than 1 cm, the chromatogram appears over 5-70 mL of the solvent when
the column diameter is 1 cm (see Fig. 6 in Ref. /). This volume should
extend over a range of about 10-100 cm provided it exists in the interior
of the long column, since the interstice of the packed crystals occupies
about 80 % of the total volume (/0). However, this does not mean that the
band of the migrating molecules extends over this range in the interior of
the column. The band should extend, in general, within a smaller range
because the molecules only partially exist in solution or the mobile phase;
they partially exist on the crystal surfaces of HA or in the stationary phase.

The flow rate applied is usually in the range of about 0.1-1 mL/min
when the column diameter is 1 cm. It is important to note that, in spite
of a variation in the flow rate, virtually no deformation of the chro-
matogram or the change in elution molarity is observed with gradient
elution. Nevertheless, with gradient elution with small sample loads, it is
observed that the width of the chromatogram increases with an increase
in column length when it is high enough (see Fig. 6 in Ref. / or Fig. 1 in
Ref. 9). This demonstrates that there is a longitudinal diffusion of mole-
cules in the column. [Broadening of the initial band at the column top at
the beginning of the development process (see above) also demonstrates
the existence of longitudinal molecular diffusion in the column.] In fact,
unless there is longitudinal diffusion, the migration rate of molecules
(or the Ry value) in the rear part of the band (where the ion concentration
of the buffer is high) should always be higher than that in the front part
(where the ion concentration is low), and the width of the band should
decrease with the migration of the band on the column; the R, should
increase, in general, with an increase in ion concentration.

It can, in general, be stated that the longitudinal molecular diffusion on
the column is contributed to by two types of diffusion: (a) diffusion due to
the heterogeneity in the flow rate of the solution within a vertical section of
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the column. Without investigating the hydrodynamic mechanism (since
this is unnecessary for our purpose), it can simply be assumed that the
heterogeneity in the flow rate does occur caused by the heterogeneity in
interspaces among HA crystals packed in the column. (b) Thermodynamic
diffusion, which is defined in this paper as any diffusion occurring provided
the flow rate of the solution is homogeneous within any vertical section of
the column. The generality of this statement can be justified by the additive
property of flux. Now, if the column is divided into a number of parallel
hypothetical columns with diameters of the order of magnitude of the
interdistances among HA crystals being packed (the hypothetical column
will be called column 4; see the section entitled “Outline of the Theory”),
then in each microcolumn the effect of the first type of diffusion would
be negligible. (“‘Parallel microcolumns” does not necessarily mean that
the boundaries among them are microscopically smooth, and that they
are always completely parallel with the axial direction of the total column,
It is possible that the boundaries zigzag microscopically, fulfilling the
condition that the flow is essentially homogeneous within each micro-
column.) Since the coexistence of the mobile and stationary phases in
a column (which is a fundamental condition necessary for the occurrence
of chromatography) should be realized by thermodynamic diffusion,
and since it is physically impossible to separate the longitudinal diffusion
from the total thermodynamic diffusion (cf. Appendix 1I), the existence
of thermodynamic longitudinal diffusion in a microcolumn is also a
necessary condition for chromatography. It is reasonable to assume that,
caused by the heterogeneity in interspaces among HA crystals, the flow
rate of molecules fluctuates at random not only among different longitudi-
nal positions on the same microcolumns but also among parts of different
microcolumns existing within the same vertical section of the total column;
this brings about the first type of longitudinal diffusion. [“Diffusion due to
the flow heterogeneity™ is a concept that is intimately related to the concept
of *“eddy diffusion.” However, the definition of this latter (slightly)
differs depending upon the authors. “Diffusion due to the flow hetero-
geneity” is different at least from “‘eddy diffusion” defined, for instance,
in Ref. 11 (cf. Theoretical Section, ““Several Important Parameters”™).]
Now, the fact that virtually no deformation of the chromatogram nor
change in elution molarity occurs when the flow rate is changed but
that an increase in the width of the molecular band does occur when the
band proceeds on the column (see above) can be explained only by
assuming that the effect of thermodynamic molecular diffusion is “hidden”
within diffusion due to the heterogeneity in the flow (assumption a). Thus
the rate of increase in the width of the band due to the former diffusion
should be negligible in comparison with the rate due to the latter diffusion;
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the ratio of the rate of increase in the band width occurring caused by
the heterogeneity in the flow rate to the mean flow rate should be constant
(at least in the range of the variation in the mean flow rate examined
experimentally; see above).

In order to explain the independence of both the shape of the chro-
matogram and the elution molarity from the mean flow rate of the solvent
(see above), it is also necessary to introduce two further assumptions. Thus,
even concerning the longitudinal diffusion of competing ions, the effect
of thermodynamic diffusion should be negligible in comparison with
the effect of diffusion due to heterogeneity in the flow rate (assumption b).
This means that the longitudinal diffusions of both sample molecules and
competing ions occur essentially in parallel on the column caused by
heterogeneity in the flow rate. The chromatographic process is virtually
a quasi-static process (assumption c¢). Thus, let us define an elementary
volume 8V representing the interstitial part, including the crystal surfaces
of HA, of a vertical section of a microcolumn (see above). We assume that
the width of the section of the microcolumn is of the same order of magni-
tude as its diameter. It would be reasonable to assume that, in this volume
(where the effect of heterogeneity in the flow rate is negligible; see above),
the total numbers of both sample molecules and competing ions (see
below) are, in general, large enough to be an object of thermodynamics.
SV should nevertheless be much smaller than the volume of the solvent
that passes through ¥ during the time interval in which the total molecular
bond passes. The system dV, therefore, should have a property such that
both the dimensions of the system and the (apparent) total numbers of
molecules and ions involved in it are maintained almost constant within
a time much shorter than that necessary for the total band of molecules
to pass through 6¥ but long enough for an equilibrium state to be virtually
achieved. Thus, in this time interval, 7 should virtually be a canonical
system in which the total Helmholtz energy is at a minimal value. The
ratio (Ry);y of the migration rate of sample molecules to the mean migra-
tion rate of the solvent occurring at any part of the molecular band should
be equal to the partition B;, of molecules in solution or the mobile phase
in the elementary volume 8V existing at that part. This is a first principle
of chromatography (I1). The value of B;, should be determinable from
the equilibrium theory.

The model which is chosen for the adsorption and desorption phenom-
ena in a system 8V is that adsorbing sites are arranged in some manner on
the surfaces of HA. Sample molecules with functional or adsorption
groups and particular ions from the buffer compete for these crystal sites.
For reasoning behind this model, the reader is recommended to see, for
instance, the Introduction in Ref. 6 and Appendix I in Ref. /2. Actually,
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it can be deduced that two types of sites, called C and P sites, exist on
different surfaces of a crystal (2, 3, 5, 6, and Appendix I in Ref. /2).
Both the distribution and the stereochemical structures of these sites on
the crystal surfaces were explored on the basis of crystallographic data
with the aid of chromatographic data (5, 6). It can be deduced that
nucleic acids and nucleoside phosphates are adsorbed onto C sites by using
phosphate groups. Acidic proteins and acidic polypeptides are adsorbed
mainly onto C sites by using carboxyl groups. All these molecules compete
with phosphate ions from the buffer that are also adsorbed onto C sites.
Basic proteins and basic polypeptides are mainly adsorbed onto P sites
by using basic groups, and compete with cations (sodium or potassium
ions) from the buffer that also are adsorbed onto P sites (5, 6, and Appen-
dix 1 in Ref. 12; for details, see /0, 13, 14). In many instances the adsorp-
tion of molecules occurs virtually onto only one of the two crystal sites
(2, 3, 14, and Appendix I in Ref. /2): this is the case treated in this paper.
A theory in which the possibility of the adsorption onto both C and P
sites is taken into consideration was developed in Ref. 3.

On the basis of the competition model (see above), the partition By, of
sample molecules in solution (or the mobile phase) in a system 6V can be
represented as a function of molarity, m;,, of competing ions in solution
in that system. With small sample loads the density of molecules in the
system &% is small in the development process of chromatography. B;,
is independent of the molecular density. The concentration of sample
molecules in solution in system &} is low throughout all the chromato-
graphic process. With ‘“retained” molecules, however, the molecular
density on the crystal surfaces of HA in 8V generally is high in the initial
band at the top of the column. With a high molecular density on the
crystal surfaces, the value of B;, depends upon the concentrations of both
the molecules under consideration and the molecules of other components
of the mixture. As a practical matter, however, the chromatography
is carried out independently of the initial value of Bj, at the column top
since, at any rate, this value of Bj, is virtually zero. This is the reason
why molecules are retained on the column. In Appendix I the function
Bjsy(my)) is given for the case when only a single crystal site is used for
chromatography.

THEORETICAL

Outline of the Theory

The general continuity equation for a flow of molecules (for a given
component of the sample mixture) on a column can be written, by taking
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into account both diffusion due to the heterogeneity in the flow rate and
thermodynamic diffusion (see the “Introduction™), as

. oQ
div, (vQ — DB grad; Q — D, grad, C) + Fri 0 )

With small sample loads, this equation should hold independently of the
presence of the other components of the mixture. The physical meanings
of the symbols involved in Eq. (1) are:

t = time.

L=

longitudinal position on the column the distance L apart from
the top.

total molecular density in the interstices, including the crystal
surfaces, of a vertical column section at position L occurring at
time ¢.

migration velocity of molecules at position L at time ¢ occurring
provided there is no longitudinal diffusion. v, therefore, represents
a mean velocity, and v-Q represents the corresponding mean flux
of molecules migrating in the interstices, including the crystal sur-
faces, of the column section. The flux v-Q corresponds directly to
the external driving force of chromatography; viz., gravity, pressure
produced by the peristaltic pump, etc.

mean molecular density (or the concentraion) in the interstitial
liquid (i.e., the mobile phase) in the column section at position L
at time ¢.

partition of molecules in the interstitial liquid in the column
section, or the ratio of the amount of molecules in solution to the
total amount in that column section. B, in general, represents the
mean value of B, (see the “Introduction”) or B, (see below) in
the column section, and it can also be defined as

B = C/Q )

D and D,,.,, = diffusion coefficients (with dimensions of length?/time

concerning the longitudinal direction of the column)
for diffusion due to the heterogeneity in the flow and
thermodynamic diffusion, the corresponding fluxes
being —DB grad; Q and -D..., grad; C, respec-
tively (see below). D is independent of the type of
molecules whereas D.,.,, depends upon it. It is
apparent that, concomitantly with the migration of the
total band of molecules on the column, the centers of
molecular bands occurring in the interstices, including
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the crystal surfaces, within the corresponding micro-
columns (see the “Introduction’) are diffused from
one another due to the heterogeneity in the flow. It can
therefore be assumed that the flux concerning this
diffusion is proportional to —grad; Q. This flux should
also be proportional to B because it must be propor-
tional to the mean migration rate (due to diffusion) of
molecules in the interstices, including the crystal sur-
faces, of the column section, and this latter should be
proportional to B. Hence the flux due to heterogeneity in
the flow should finally be proportional to — B grad; Q.
It can simply be assumed that the flux due to
thermodynamic diffusion is directly proportional to
the concentration gradient, —grad, C, of molecules
made in the interstitial liquid.

Since actually the effect of thermodynamic diffusion is negligible in
comparison with that of diffusion due to heterogeneity in the flow (see
the “Introduction’), the relationship

DB grad; Q » Dy, grad; C (©))

should be fulfilled, and Eq. (1) reduces to

div,(vQ — DB grad, Q) + %g—: =0 C))

B is independent of the total amount of molecules in the column section
(i.e., the quantity Q) if the amount of molecules is small because, in this
situation, the linear section of the adsorption isotherm is realized. With
stepwise chromatography the migration of molecules on the column can
be described by using Eq. (1) or (4) (see Appendix III). With gradient
chromatography, however, the value of B within a given section of the
column changes with time ¢ due to a change (with time ¢) in molarity,
m, of competing ions in the interstitial liquid in the same column section;
m increases and B also increases gradually. Therefore, if the total amount
of molecules in the column section is small, the increase in B with an
increase in m should be carried out independently of the amount of
molecules (see above). This means that with gradient chromatography
it, as principle, is impossible to describe causally the migration of mole-
cules on the column by using Eq. (1) or (4) (even though the conservation
of the amount of molecules in a column section can be represented by this
equation). This is because Eq. (1) or (4) gives a causal relationship between
B (which is involved in v; cf. Eq. A7) and Q whereas, with gradient
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chromatography, B is determined only by m independently of Q (see above;
cf. Ref. &).

It should be considered, however, that even with gradient chromato-
graphy, the migration of molecules on the column is describable by
using a certain continuity equation because, even in this instance, the
conservation of the amount of molecules should be predictable if the
initial condition of chromatography is given. This leads to a consideration
that, besides the actual flux of molecules occurring in the column, a
certain flux should be conceivable; this flux, as a constituent of the new
continuity equation, should play a fundamental role in gradient chromato-
graphy. The existence of the fundamental abstract flux in gradient chro-
matography can also be suggested from the consideration made in
Appendix II. In Ref. 8, the abstract flux is explored and the fundamental
continuity equation for gradient chromatography (concerning this flux)
is proposed. The equations representing the theoretical chromatograms
are derived as a solution of the abstract continuity equation (see Appendix
11I).

In the present paper the same equations representing the gradient
chromatogram are derived by using another method. Thus the column is
divided into a number of parallel microcolumns 4 (4 = 1,2, ...) having
diameters of the order of magnitude of the interdistances among HA
crystals being packed (see the “Introduction”). We characterize the
microcolumns in such a way that the volume of the solution that flows into
any column / is the same within unit time interval. We calculate (1) the
contribution of the band of molecules eluted out of column 1 to the total
chromatogram as a function of molarity m, of competing ions that also
are eluted out of the column A by assuming that there is no thermodynamic
longitudinal diffusion in column 2 (for this assumption, see below), (2) the
distribution of the flow among different microcolumns, and (3) the relation-
ship between the local molarity m, and the mean molarity m in the last
section at the bottom of the column. The fact that the effect of thermo-
dynamic longitudinal diffusion is negligible in the actual column (see the
“Introduction’) means that the effects of thermodynamic diffusion in the
interiors of microcolumns are canceled out among different microcolumns.
The assumption of no thermodynamic longitudinal diffusion in a column
2 introduced in Step (1) should be valid for the final result of the calcula-
tion. Now the final chromatogram obtained under a given experimental
condition that can be represented by a parameter s (Eq. 25) can be written
as a function of m as

® d
s = | s s Gnton ©)
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where s; is the parameter characterizing the column A. Column A can be
characterized in terms of the total interstitial volumes involved in it. s,
is defined as proportional to these volumes (Eq. 22). k(s,) ds, is the proba-
bility of the occurrence of column A characterized by a value of s, com-
prized between s, and s; + ds;. k(s;) represents the distribution of the
flow among different microcolumns (cf. Step 2) because the flow hetero-
geneity in the total column is caused by the heterogeneity in interspaces
among HA crystals packed in the column (“Introduction™). f,(m,, s,) is
the contribution of the molecular band eluted out of column A (cf. Step 1).
fi(m,, 5;) dm, represents the probability that molecules are eluted between
molarity m, and m; + dm, from a column A which is characterized by the
parameter s;. [f,(m,, s;) is a delta-function (see Eq. 17). Therefore, the
meaning of f,(m,, 5,) dm, is {™2*%"s f.(m,, 5;) dm,. Hereafter, the former
symbolical expression will be used for any delta-function.] f;(m,,s;)
(dm,/dm) dm, therefore, represents the probability that molecules are
eluted between molarity m and m + dm from the actual column. m,
can be considered as a function of m [cf. Step 3; see the section entitled
“Step 3: Calculation of m,(m)”]. It can now be understood that f,(m,, s,)
(dm,/dm) dm x(s,) ds, represents the probability that the contributions of
the bands of molecules that are eluted from microcolumns with character-
istic values between s; and s, + ds; of the parameter s; to the total
chromatogram appear between molarity m and m + dm of the ions. This
means that f(m) dm represents the proportion of the part of the actual
chromatogram that appears between molarity m and m + dm, and that
f{(m) represents the chromatogram itself.

Step 1: Calculation of f;(m,, s;)

In Appendix II, two differential equations are derived that represent the
idealized chromatographic processes with stepwise and gradient chromato-
graphies occurring in the absence of any type of longitudinal diffusion in
the column; these are the DeVault equation and a Wilson-type equation,
respectively. For these derivations, it is assumed that the pore volume «
per unit length of the column is macroscopically constant. Through a
procedure similar to the derivation of Eq. (A13), but with some attention
to the fact that the pore volume a; 54 (or the apparent pore volume
a,* 84; see the section entitled “Several Important Parameters”™) per unit
length of the microcolumn A depends microscopically upon the longitudi-
nal position, a Wilson-type equation representing the idealized elution
process occurring on column A provided there is no thermodynamic
longitudinal diffusion:
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(25n)
AT-8") o

ds; om, =0 ©)

can be derived where
1= —- B)Q, O]
(cf. Eq. A4) represents the molecular density on the crystal surfaces in

a section of the column A. In contrast with s in Eq. (A13) that is defined
by Eq. (A12), in Eq. (6) s;, which is a function of L, is defined as

si(L) = j nwa ®

where
gi(L) = —dm,/dL ®

represents the increase in local molarity of competing ions per unit
length of the column A measured from the bottom to the top. g, fluctuates
at random around a mean value g with an increase of L due to the fluctua-
tion in (apparent) pore volume per unit length of the column A (see the
section entitled ““Several Important Parameters™).

Partition B, (Eg. 6) can be represented as a function of m, simply by
replacing m;, in Eq. (Al) with m; as

1
I+ g(e'm; + )7

B(m,) = (10)
It can be assumed that B, is virtually independent of a microscopic varia-
tion in pore volume per unit length of the column A because it is by local
equilibrium between the adsorbed phase and the solution in a microscopic
region that the value of B, is determined. This equilibrium is achieved due
to thermodynamic motion of molecules. Therefore, if B, changed due to
a microscopic positional dependence in the pore volume, this change
should be canceled out by thermodynamic diffusion itself.

Corresponding to Eq. (A20), let us introduce a function

my,

B
r(m/l) = j‘ 1 _ABA dml

Min

1™ ,
= aj (¢'m, + 1) dm,

Min

= W{_——B[(w’m,1 + DY = Ae'm, 4+ 17T (n

or its derivatives
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dr(m;) _ B,
dm, 11— B,

where m,, represents the initial molarity of competing ions at the beginning
of the gradient. This should be the same for any column A. As B, is virtually
independent of the pore volume per unit length of the column 4 (see above),
by substituting the first equality in Eq. (11) into Eq. (6),

1 .
= 5(@’"1; + ) (12)

o1a 28 _
3s, T aromy = ° (13)

is obtained, which can be compared with Eq. (A13").

With small sample loads when the band of molecules with an infinites-
imal width is formed intially at the top of the column, the initial condition
for Eq. (13) can be written as

[tilr=0 = 6(s2) (14)
because, when m,; = m,,, then r = 0 (Eq. 11). Under the condition of Eq.

n»

(14), Eq. (13) has a solution

Xa = 05, — r(my)) (15

Due to the property of the delta-function, Eq. (15) only shows symbolically
that the band of molecules with a very small width is formed at a longi-
tudinal position on the column 1 at which a relationship

5, = r(my) (16)

is fulfilled (cf. Eq. A23). Equation (15) does not give any information
concerning the partition of molecules between the interstitial liquid and
the adsorbed phase. This is consistent with the fact that the Wilson-type
equation, Eq. (13), does not represent a continuity equation for the actual
flow of molecules in the column; viz., it does not represent the conserva-
tion of the amount of molecules in the interstices, including the crystal
surfaces, in the column. Equation (13) is independent of molecules in the
interstitial liquid (see Appendix II).

However, let us examine the following hypothesis: we consider the
flow of molecules at a given position L on a given column A. This position
is characterized by a parameter s, {Eq. 8). Then it should be observed that
the value of the parameter r increases with a lapse of time because m,
increases with a lapse of time (Eq. 11); all molecules appear at a certain
value of r. The probability that the molecules appear between the value r
and r + dr of the parameter r should be given by yx; dr, where y, is defined
by Eq. (15). This means that the probability that the molecules appear
between molarity m; and m, + dm, of competing ions should be equal to
%a [dr(m;)/dm,} dm;. The molecules that appear between molarity m, and
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m; + dm, can now be interpreted to be those existing in the interstitial
liquid in the column since m;, represents the molarity in the interstitial
liquid. This probability can also represent the probability that the mole-
cules are eluted between molarity m, and m, + dm, out of a column A
with length L, or the column A characterized by the parameter s, (see
above). The contribution f, of the band of molecules eluted out of
column A to the total chromatogram can now be represented as a function
of both m; and s, as

dr(m;)

d
Samy, 53) = x4 dam,, = d(s; — r(my) Hm,)

dm,

17

Several Important Parameters

We define 81 as the ratio of the volume of the solution that flows into
a column A to the volume that flows into the actual whole column. Since
the volume of the solution that flows into any column A is the same within
a unit time interval (see the section entitled “Outline of the Theory™)
the value of 4 is independent of the value of A, fulfilling the relationship

jéiz 1 (18)

A local volume in the actual column that corresponds to the value of
8A%2 represents a canonical system 6} (see the “Introduction”).

Let us introduce a quantity «,(L) 64 that defines the pore volume per
unit length of a column 4 or the total area of the interstitial part on a verti-
cal section of the column 1 existing at a longitudinal position L. «,;(L) 64
corresponds to « with the actual column (see Eq. A7) but is a function of
L. It can be assumed that o, (L) fluctuates microscopically at random with
an increase of L around the mean value . Provided that there are no
exchanges of liquids among different microcolumns and that the liquid
is incompressible, the flow rate on a column A should be inversely
proportional to «;(L). The flow rate also should fluctuate virtually at
random with an increase of L on a column A. Actually, the exchange of
liquids occurs among microcolumns. In this instance, it is possible to
consider an apparent pore volume per unit length of the column
A, 0, *(L) 64, instead of a,(L) 64, and to attribute the variation in the
flow rate on a column 4 to the variation in the value of a;*(L). It is
reasonable to assume that «,*(L) also fluctuates at random with an
increase of L around the same value « as in the case of no exchanges of
liquids (see above). However, the amplitude in fluctvation in o,*(L)
would be smaller than that for «,(L) because, in the former case, the fluc-
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tuation would be partially canceled out by exchanges of liquids among
microcolumns.

It is to random fluctuation in the flow rate within each column 1 that
the longitudinal molecular diffusion in the actual whole column is due
(see above). If the mean flow rate in the actual column decreases, exchanges
of liquids among microcolumns would increase within a time interval
necessary for a unit increase in elution volume to occur. This might lead
to the conclusion that the amplitude in fluctuation in o, *(L) decreases and
that the longitudinal molecular diffusion in the whole column also de-
creases with a decrease in the flow rate. This consideration is not true,
however, since it should be to thermodynamic diffusion that the exchanges
of liquids among microcolumns are mainly, or at least partially, due.
The shape of the experimental chromatogram is virtually independent
of the flow rate if it varies within the range applied in common practice
(see the “Introduction’). This means that, within this range of the flow
rate, the total longitudinal diffusion of molecules in the column receives
hardly any influence from a change in thermodynamic diffusion of the
liquids among microcolumns. This change occurs due to a change in the
flow rate within a time interval necessary for a unit increase in elution
volume to occur. If the mean flow rate in the column is reduced until
considerable exchanges of the liquids begin among the microcolumns,
then the width of the total chromatogram must also begin to extend due to
thermodynamic diffusion. Thus the condition of a quasi-static process
(see the “Introduction’) is broken. This condition is also broken if the
mean flow rate in the column is too high because, in this instance, the
state of any position in the column should be far from the equilibrium
state.

Let us again introduce a quantity defined as

1,
Ly = L (L) dL (19)

From this definition it is evident that L;(L) 4 represents the apparent

total interstitial volumes involved between the top (L = 0) and a longi-

tudinal position L on column A. The mean value L', concerning A, of
“(L) at position L can be represented as

L'(L) = aL (20

because both a,(L) and a,*(L) fluctuate at random with an increase of L
around the same mean value a (see above). L' also represents the total
interstitial volumes involved between the top and position L of the actual
column.

It is now possible to define the probability 8(L}) dL} that the apparent
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total interstitial volumes involved between the top and position L on
column A takes a value between L} 8/ and L) 54 + dL’ 6. It can be con-
sidered that the function 9(L}) is directly related to the distribution of flow
in a vertical section, existing at position L, of the actual column. The
probability 9(L}) dL’, can be written as

LY dL) = e~ WAL AL gyt Q@D

1
JamiT
where 0 is a positive constant with dimensions of volume. Equation (21)
can be derived as follows. First, the probability density 3(L}) should be
represented by a Gaussian distribution around a mean value L’. This is
because o;*(L) should fluctuate at random not only with an increase of
L when 1 is constant (see above) but also with an increase of A when L is
constant; i.e., at position L on the column, around the same mean value o.
Therefore the integral of o;*(L) dL between the column top and position
L, ie., Li(L) (Eq. 19), should also fluctuate at random with an increase
of A when L is constant. The mean value of Li(L) should be equal to the
value of L'(L) (see above). Further, the maximum value of A can be
assumed to be virtually infinity (see above). This means that 9(L)) is
a Gaussian distribution around a mean value L’. Second, the standard
deviation of the Gaussian distribution should be proportional to the
square-root of the distance L from the column top, or the square-root of
L' (see Eq. 20). This is because the increase in width of a distribution of
statistical elements, which is zero initially or when L’ = 0, is attributed to
a random fluctuation of these elements occurring with an increase of L'.

The parameter s; (Eq. 8) can now be represented as

s(L) = £ Li(L) 6 = g'Ly(L) @)
where
g _ __dm_
oA~ d(L; %) 23)

represents the slope of the molarity gradient of competing ions on column
A, expressed as an increase in molarity per unit interstitial volume in
column A measured from the bottom to the top. As the volume of the
solution that flows into any column A is the same within a unit time
interval (see above), ¢’ is a constant independent of both A and L. This
means that g’ can also represent the gradient on the actual column
(expressed as an increase per unit interstitial volume measured from the
bottom to the top), or the increase in molarity per unit elution volume.
Thus g’ can also be defined as
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, _ dm _dm

9 =74~ av

where it should be recalled that m represents the mean or macroscopic
molarity of competing ions in a section of the actual column.

It can be shown experimentally that the slope of the molarity gradient
on a column is essentially equal to the slope that should occur provided
there is no adsorption of the ions on the crystal surfaces of HA (see
Ref. 7, Theoretical section F). This means that, even though the delay of
the gradient occurs immediately after the gradient has been introduced
because of the adsorption of the ions, any part of the gradient migrates
(macroscopically) with the same rate after the initial delay on the column.
This rate should be equal to the rate realized, provided there is no
adsorption of the ions on the crystal surfaces. Thus molarity m of the ions
in the interstitial liquid or the mobile phase on the column should be
high enough, at least except at the beginning of the gradient, for almost
all ions in a column section to be in the mobile phase (see Ref. 7, The-
oretical section F). Therefore m or m; should be virtually independent of
the adsorption and desorption phenomena of sample molecules in the
column. This is confirmed experimentally (7).

The final chromatogram should be expressed, instead of in terms of
m; and s;, in terms of macroscopic molarity m in the last section of the
column and a macroscopic parameter s which is introduced by Eq. (A12),
or by

(24

s=g'L =gL 25)
where
dm dm ,
g= -G =g, =ag 26)

represents a mean slope (concerning 1) of the gradient of competing ions
on the actual column, expressed as the increase in molarity per unit length
of the column measured from the bottom to the top. This is macroscopi-
cally constant with a linear gradient. By comparing Eq. (25) with Eq. (8),
it can be understood that s represents a mean value of s,(L).

Step 2: Calculation of «(s,)
By using Eqgs. (21) and (22), x(s,) ds;, can be calculated as

dL;
K(s) ds, = (L) gsf ds;

1
- J4nbyg's

e~ (sa—9)2/40g’s ds, (27)
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If both Egs. (17) and (27) are substituted into Eq. (5),

1 _ . dr(my) dm
- [rimay~s12/a8g's TTNT7AT 20
Julm) N 4nt'se dm, dm (28)
is obtained.
Step 3: Calculation of m,(m)
Intergrating Eq. (23),
my —my = g'L; 29)

is obtained where my, is the integration constant representing the molarity
of competing ions at the top (L)} = 0) of column A. This should be
independent of the value of A. Equation (29) can be rewritten, by using
Eq. (22), as

my — m, = s,(L) (30)
Similarly, we obtain from Eq. (24)
my—m=g'L 31
which can be rewritten, by using Eq. (25), as
mg — m = s(L) (32)
Now, by eliminating m, between Eqs. (30) and (32),
m=m, + s,{(L) — s(L) (33)

is obtained. Further, 5,(L) in Eq. (33) can be replaced with r(m,) because
5,(L) simply represents the value of s, at any longitudinal position L on
column A, whereas r(m,) represents the value of s, occurring at a position
L on column A at which the band of molecules with an infinitesimal width
exists. This can be understood from the physical meaning of Eq. (16) or
(15). Hence we have

m = m,; + r(m;) — s(L) 34)
from which we also have
dm;] 1
[En"l = @3
1 + ———
dm,

Equation (34) gives an implicit expression of the function m,(im) occurring

in the last section at the bottom of the column with length L. This column

is characterized by the value of s when g’ or g is given (Eq. 25). Therefore,

the experimental condition can be represented by the parameter s.
Substituting Eq. (35) into Eq. (28), we obtain
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dr(m,)

’ dm
m) = —[r(ma)—s1?/48g’s A
Jdm) 4nbyg's ¢ 1 + dr(m;) (36)

dm,

which can be rewritten by using, instead of g’ and 8, g and

8, = 0/a (37
as
dr(m;)
1 dm
- =[r(mz) —s13/400gs A ’
N 36
1+
dm;

The reduced diffusion parameter 8, (Eq. 37) has a dimension of length.
In both Eqs. (36) and (36') the factor

dr(m;)
dm,
N .
1 +
dm,

measures the partition of molecules in the interstitial liquid in column A
(see Egs. 10 and 12).

Equation (36) or (36) represents, with Eq. (34), the chromatogram
/. as a function of m by using m, as an intermediate parameter. When
the column has a macroscopic length and the slope g’ or g of competing
ions has a finite value (not too close to zero), then f,(m) is normalized such
that
j Sfm)dm =1 (39)

Min
which is common practice (8).
Finally, the shape of the chromatogram f(m) is governed mainly by the
factor
I

J4nbg's

—[r(ma)—s)*/46g's

e

or
1

J4nbogs

in Eq. (36) or (36). This represents a Gaussian distribution concerning
the parameter r with the maximum value at r = 5. On the other hand,
Eq. (34) shows that when r(m,;) = s, then m;, = m. This means that the

o~ Lrma)— s12/480gs
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value of m which fulfills the relationship

rim) = s (40)
or

1 . ,
m = a{[(X’ + Do'gs + (9'myo + DFFIVETD — 13 (40)

(see Eq. 11) represents approximately both the molarity of the ions at
which the maximum height of the chromatographic peak occurs and the
molarity at which the center of gravity of the peak is eluted. It should be
noted that Eq. (40) is identical to Eq. (A25). This represents the
elution molarity of the sharp peak occurring provided there is no longi-
tudinal diffusion of molecules in the column. In a subsequent paper (9)
it will be shown numerically that the theoretical chromatogram has a shape
almost identical to a Gaussian shape.

The Case When x' =

It can be understood from the physical meanings of the parameters x’
and x (see Appendix I) that to change the value of x’, while keeping the
value of the parameter

&= x/x 41

constant, corresponds to considering homologous molecules with different
dimensions. We consider here an extreme case when the molecule has an
infinite value of x’ and a finite value of &, or when the molecule has
infinite dimensions. It is easy to show that, for molecules with infinite
dimensions, B, (Eq. Al} or B, (Eq. 10) increases stepwise from O to |
with an increase of mj;, or m; at a critical value:

e = T - 1) (42"
¢

This means that, provided there is no longitudinal diffusion of sample
molecules nor competing ions in the column, the chromatogram should
always be a sharp peak appearing at molarity m° of the ions. This is
independent of both the length of the column and the slope of the molarity
gradient of the ions. Therefore the contribution, denoted by f,;(m,), of
the band of molecules eluted from a column 4 to the total chromatogram
can be represented, instead of by Eq. (17), as

Slmy) = d(m, — m°) (43)

*If the factor (kT/e)((In 7)/x’) does not converge to zero when x’ tends to infinity,
¢ in Eq. (42) should be replaced with the apparent value: &,,, = & + (kT/e)((In 7)/x").
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which is independent of s;. On the other hand, m, is always related to m
through Eq. (33) or by the relationship

S;.—S=m—m;_ (33’)
Therefore, the quantity v(m,)dm,; which is obtained by substituting
Eq. (33) into the term 5, — s in Eq. (27) and by replacing ds, with dm *,
ie.,

o(m,) dm, = ~(m=ma)?/46g'S(L) gy (44)

1
\/4n0g’s(L)e
represents the probability that, when the mean molarity of the ions in the
last section at the bottom of the column with length L is m, the local
molarity in that section is between m, and m, + dm,. Hence the chro-
matogram f(m) can be represented as

fim) = r Fom;o(m,) dim

Min

1
= W e
1
N T
which is a Gaussian distribution with both the maximum height and the
center of gravity always at

~(m—m°)2/40g's

~(m—-m®)2/400gs (45)

m = m°" (46)

(for m°, see Eq. 42). The standard deviation ¢ of the distribution fy(m)
(Eq. 45) can be expressed in terms of the range of molarities of competing
ions, as

o = \/20g's = /20,95 @n
Equation (47) can be rewritten, by using Egs. (20), (25), (26), and (37), as
o =,/20L'g’" = \/20,Lg 47)

The standard deviation of the chromatogram also can be represented in
units of both elution volume V and reduced elution volume

Vo = Via (48)
by dividing Eq. (47") by g’ and g, giving

oy = 200 (49)

*To be precise, the quantity obtained by substituting Eq. (33’) into the term s, —
in Eq. (27), by replacing m — m, with m, — m, by replacing ds, with dm,, and by
again replacing m, — m with m — m;,.
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and
aVo = \/200L (50)

respectively. Both o and o) are independent of the slope of the molarity
gradient, and increase with an increase of L’ and L, respectively. This is
a natural conclusion since the chromatogram occurring provided there is
no longitudinal diffusion in the column is a sharp peak independent of
both the slope of the molarity gradient and the length of the column
(see above).

It is easy to show that Eq. (40') reduces to Eq. (46) when x’ approaches
infinity and when ¢ is constant. In a subsequent paper (9) it will be shown
numerically that Eqgs. (36) and (34) or Egs. (36) and (34) reduce to a single
equation, Eq. (45), at the same time (Figs. 2 and 3 in Ref. 9). This is
shown theoretically in Ref. 8.

DISCUSSION

Classical theories of adsorption chromatographies were developed over
40 years ago by Wilson (/5), DeVault (16), and Weiss (I7) for stepwise
chromatography on the basis of simple assumptions of (a) instantaneous
equilibrium of adsorbed phase and solution and (b) no longitudinal diffu-
sion in the column (cf. the last paragraph in Appendix II), [The terminol-
ogy “stepwise” includes, of course, the case when the development of the
solute on the column is carried out by using the same solvent as that of
the sample solution. In HA chromatography, however, the solvent used
for the development usually is different from that of the sample solution
(see the “Introduction’).] The relation of these theories to the theory
developed earlier (2-6) for gradient chromatography, also based on both
assumptions (a) and (b), was discussed in Ref. 7. This is reviewed (with
some modifications) in Appendix II, limiting the case within small sample
loads. Thus there is a fundamental difference in mechanisms between
stepwise and gradient chromatographies (Appendix II; see also Appendix
IIT). A more explicit explanation for this difference is given in Ref. 8.

Stepwise and gradient chromatographies are also different in the
following two respects. First, the equation representing the stepwise
chromatogram (with small sample loads) involves the parameter B (see
Eq. A35 or A35). B represents the partition of molecules in the mobile
phase, taking a constant value throughout the chromatographic process.
In other words, the chromatographic process is independent of the mech-
anism itself due to which the parameter B takes the given value. As a
result, even with gel chromatography, it is possible to assume a partition
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B and to consider the elution process of the sample on the basis of the
theory of adsorption chromatography with stepwise elution. This is a
consideration first developed by Ackers (/8). With gradient chromato-
graphy, however, it is the structure of B, and not the value of this
parameter, that is directly concerned with chromatography. The structure
of B is determined by the competition mechanism (see the ““Introduction’),
and this structure can, in general, be represented as the mean structure
of B, (Eq. 10) concerning A.

Second, with heavy sample loads when mutual interactions among
sample molecules play an important role, chromatography depends upon
the structure of B even in the case of stepwise chromatography. Here also,
however, the manner of dependence is fundamentally different from
that with gradient chromatography. In general, it is the shape of the
adsorption isotherm of sample molecules on the stationary phase that
determines the structure of B. This shape is determined by both geometrical
and energetical interactions among molecules existing in the stationary
phase, i.e., on the crystal surfaces with HA chromatography. The interac-
tions occurring in the mobile phase or solution are negligible since the
molecular concentration in solution is small. With HA chromatography
the geomefrical interactions among molecules on the crystal surface can be
expressed in terms of the probability p that when a new molecule is added
at random onto the crystal surface, a certain proportion of which is already
occupied by molecuies, it is not superimposed on the already adsorbed
molecules (79, 20). [With single component chromatography, let y be the
proportion of the crystal surface occupied by molecules that have already
been adsorbed (see above). In this instance, provided the effect of ener-
getical interactions among molecules is negligible, the Langmuir adsorp-
tion isotherm is obtained when p = | — x.] It can be shown, however,
that the structure of B receives hardly any influence from the actual value
of p in the case of gradient chromatography (/9, 20). Therefore, if the effect
of the energetical interaction is negligible, the chromatography is carried
out aimost independently of both the sample load and the shape of the
adsorption isotherm. With stepwise chromatography, however, the
shape of the chromatogram depends directly upon the shape of the adsorp-
tion isotherm even in the absence of energetical molecular interaction.

Classical theories of adsorption chromatographies (see above) are also
called “equilibrium” theories in contrast with *“rate” theories developed
more recently for the case of stepwise chromatography (//, 21-31). In
these theories both (a) the adsorption and desorption phenomena and
(b) the longitudinal diffusion of molecules in the column are treated on
kinetic bases. It is shown that slow adsorption and desorption rates of
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molecules (in comparison with the flow rate) also bring about longitudinal
diffusion. Therefore the total thermodynamic diffusion (defined in the
“Introduction”) would, in general, be caused both by thermal Brownian
motion of molecules in solution and adsorption and desorption phenom-
ena. If the flow rate is low enough, however, the latter effect should be
negligible. Thermodynamic diffusion (being identical, in this instance,
with thermal Brownian diffusion) is represented by the last term within
the divergence term in Eq. (1). [Equation (1) is valid even by taking into
acount the diffusion associated with slow adsorption and desorption rates;
in this instance the third term within the divergent term in Eq. (1) is
concerned with thermal Brownian diffusion, and the diffusion term due to
slow adsorption and desorption rates does not explicitly appear in Eq.
(1). It should be assumed (/1, 2/-31), however, that C and y (being
related to Q through Eq. A5) change with each other with time 7. As a
result, Eq. (1) can be rewritten into simultaneous equations for C and yx
(cf. 22, 25-29). In the section entitled ““Outline of the Theory,” however,
the explanation of Eq. (1) was made by neglecting a priori the effect of
slow adsorption and desorption rates, since this hypothesis is sufficient
for our purpose.] In the present theory it is further assumed that the
effect of thermodynamic diffusion is “hidden” within diffusion due to
heterogeneity in the flow rate in the column or, more generally, that the
chromatography is a quasi-static process since it is carried out virtually
independently of the flow rate (see the “Introduction”). In this situation,
kinetic treatment of HA chromatography would gain no advantages over
the quasi-static treatment.

Sorensen (29) reaches the conclusion that the migration velocity of the
center of mass of a molecular band on the column is unaffected by any
deviation from quasi-equilibrium conditions (at least with “linear”
chromatography, which would be the case with small sample loads). A
similar conclusion is also reached by Giddings on the basis of a random-
walk consideration for the chromatographic process (/1). This conclusion
would be applied to any microcolumn 4, which would mean that, provided
the effect of thermodynamic diffusion (i.e., both thermal Brownian
diffusion and diffusion due to slow adsorption and desorption rates) is
“hidden” within diffusion occurring due to the flow heterogeneity in the
total column, the chromatography is carried out independently of the
adsorption and desorption rates of molecules. The chromatographic
process is virtually a quasi-static process in which the chromatogram is
independent of the flow rate.

A differential equation similar to Eq. (1) or Eq. (A39) was given nearly
30 years ago by Lapidus and Amundson (22) for the purpose of describing
a stepwise chromatographic process by taking into account the longi-
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tudinal diffusion in the column. Mathematical solutions for this equation
were obtained under wider initial conditions than that applied in Appendix
III (Eq. A40). On solving the differential equations in both Ref. 22 and
Appendix III, it is assumed for mathematical simplicity that the length
of the column is infinity. In Ref. 22, however, the physical interpretation
of the longitudinal molecular diffusion in the column was made on a
kinetic basis (even in the “‘equilibrium™ treatment in Ref. 22). As a result,
the conclusion was reached that the mathematical solutions for the
continuity equation are valid for describing the behaviors of molecules
on a hypothetical column with infinite length, but that these cannot give
the shapes of any actual chromatograms of the molecules that are eluted
out of the column with finite length (22). The situation is different with the
quasi-static treatment in the present paper in both stepwise (Appendix
IIT) and gradient chromatographies. In this treatment the shape of the
actual chromatogram can be represented by using the mathematical
solution obtained by assuming that the column has an infinite length,
since the flow of molecules that proceeds backward on the column is
negligible (see Appendix III).

However, on calculating the theoretical chromatogram, Segrensen
(29, 30) introduced the following assumptions in a somewhat implicit way.
Thus he assumed (a) that the longitudinal thermal Brownian diffusion
in a column (see above) is negligible in comparison with both diffusion due
to the flow heterogeneity and diffusion occurring associated with adsorp-
tion and desorption phenomena (cf. the last line on p. 200 in Ref. 29),
and (b) that the last diffusion occurs within the column independently of
the total column length. Under these assumptions the chromatogram for
any finite column length might be calculated by using a boundary condi-
tion for an infinite column (29, 30). 1t has explicitly been shown (29, 30)
that the equation that is equivalent to Eq. (A34) can be derived for the
special case when the elution velocity is low (but not too low, in order for
thermal Brownian diffusion to be negligible).

As Serensen points out (29, 30), the equation representing the molecular
distribution as a function of both column position and time (or elution
volume) that he has derived (under some approximations) is much simpler
and more tractable than those derived by other authors (22, 27, 28) on the
basis of the same differential equation (Eq. 1, but see page 346). It should
be noted, however, that in Bak’s (26) or Sgrensen’s (29, 30) equation,
the molecular distribution is represented in terms of Q (or ¢, according
to the Serensen’s notation) in contrast with the equations in Refs. 22,
27, and 28 where the distribution is represented in terms of C. At least
under suitable approximations simpler equations might, in general, be
obtained in the case of € than with C. This is because, with stepwise
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chromatography, it is the flux with density Q, and not the flux of density
C, that is chromatographically fundamental, at least when adsorption and
desorption rates are high in comparison with the mean flow rate (cf.
Appendix II and Ref. 8).

However, the following fundamental assumption involved in Refs.
29 and 30 is unreasonable (although it does not influence the above
argument). Thus it is assumed that the chromatogram for a column of
given length L (or x in Refs. 29 and 30) should be represented in terms of
the distribution in Q (or ¢, in Refs. 29 and 30) and not by the distribution
in molecular concentration C in the mobile phase [or c(o) in Refs. 29
and 30] as a function of elution volume ¥ (or time ¢). Under this assump-
tion it is not Eq. (A35) or (A35'), but rather Eq. (A34) that gives a chro-
matogram (see Appendix III). Sgrensen mentions (29) that this assumption
is justified by the fact that “both the ‘mobile’ and the ‘stationary’ peak
are eluted when the peaks suddenly reach the end of the bed of stationary
phase, i.e., the end of the chromatographic column. The elution profile is
therefore the sum of the two peaks.” This statement is unreasonable
because it is molecules in the mobile phase that actually migrate on the
column. For any vertical column sections involving that existing at the
bottom of the column, it is through the mobile phase that molecules are
transported. This means that it is concentration C in the mobile phase
within the last section at the bottom of the column, and not the total
density Q in that section, that represents the molecular concentration in
solution that has just been eluted out of the column. Experimentally,
it can be observed directly by using colored molecules like cytochrome ¢
that the width in the molecular band migrating on the column, i.e., the
volume of the solution over which the band within the column appears
is generally smaller than the volume of the solution that is eluted out of the
column and over which the chromatogram appears. This can be explained
only by assuming that it is C (and not Q with Q > C) that represents a
chromatogram (cf. the ‘“Introduction”). It is highly desired that the
experimental analysis in Ref. 30 be reexamined, since it is designed in
a very rigorous way.

APPENDIX |

In a canonical system 6V in a column, the total Helmholtz free energy
should be at a minimum (see the “Introduction’). The chemical potentials
should be equal between solution and the adsorbed phase for molecules
of any components of the mixture and for competing ions. When adsorp-
tion occurs onto a single type of crystal sites (see the “Introduction”)
and when the total density of sample molecules in 8 is small, the partition



13: 49 25 January 2011

Downl oaded At:

GRADIENT HYDROXYAPATITE CHROMATOGRAPHY. | 349

By, for a given molecular component in solution (i.e., the ratio of the
amount in solution to the total amount in 6 V) can be represented as a func-
tion of only molarity m;, of competing ions in solution. The function
B;y(my,) is given by Eq. (1) in Ref. 2. This can be rewritten with a slight
modification as

1
1+ g@'mgy + 1)

B;y(myy) = (AD

where
q = pre™/ T (A2)

In Eq. (Al) the term ¢'m,, represents the “force” endowed with the
competing ions which drives the sample molecules out of the crystal
surfaces. The ions drive the molecules through a competition mechanism.
[The *“driving force” ¢’'my;, was written as A, or A in earlier papers (2-6).
A is defined as the product of the absolute activity of the ions and the
exponent of the adsorption energy of an ion onto a crystal site (where
energy is defined as positive and expressed in units of k77).] It can be
assumed (5, 6) that ¢’ is essentially positively constant throughout the
chromatographic process. This means that “driving force” is virtually
proportional to molarity m,,. x’ is the average number (in the equilibrium
state) of adsorbing sites of HA on which the adsorption of competing ions
is impossible due to the presence of an adsorbed molecule. x’ therefore
represents the effective dimensions of the sample molecule. In Eq. (A2),
x is the average number (in the equilibrium state) of functional groups per
molecule that react with sites of HA; —e (¢ > 0) is the adsorption energy
of a functional group of the molecule onto one of the sites of HA; T
is the absolute temperature; k is the Boltzmann constant; and § and t
are positive constants related to the properties of the column and the
sample molecules, respectively. Thus, neglecting a solvent effect, 7 represents
the number of effective geometrical configuration(s) of a sample molecule
on the crystal surface (in the equilibrium state) and is related, in general,
to both the distribution of functional groups on the molecular surface
and the flexibility (or the rigidity) of the molecular structure. [It can, there-
fore, be considered that, in Eq. (A2), Q= —kT(Ing—In f)=-xe—kTIn 1
represents the free energy per molecule on the HA surface (neglecting
the solvent effect), whereas — x¢ represents the energy per molecule on the
HA surface.] In the special case where the flexibility (or the rigidity) of
the molecular structure is the same in both solution and the adsorbed state,
which should be true at least with rigid or native molecules, 7 should be
related only to the distribution of the adsorption groups on the molecular
surface. Therefore, provided ¢ is large, t should represent the number of
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energetically most stable geometrical configuration(s) of the molecule on
the crystal surface.

In the competition model the energetical interaction between the
sample molecule and the competing ion is not taken into consideration.
In some instance, however, it can be assumed that the apparent x’ value is
changed due to this interaction (32).

APPENDIX I

On the basis of Eq. (1) we here derive two differential equations repre-
senting idealized chromatographic processes that should occur in the
absence of any type of longitudinal diffusion in the column. These equa-
tions are valid with stepwise and gradient chromatographies, respectively.

As a first step in this procedure, let us consider an intermediate case
where only thermodynamic diffusion survives. In this instance, Eq. (1)
reduces to

o0
div, (vQ — Dypern grad; C) + 5 = 0 (A3)

It is possible to rewrite Eq. (A3) into two different forms:
*C _ a(vIQ) Q

Daem3i2 = 751 T % (A3
and
6<|vl : x>
1-B aC 2C oy ,
oL tar  Peemppzta T (A3
where
x= (1~ B)XQ (A4)

represents the mean molecular density at time ¢ on the crystal surface in
a vertical column section at position L. By using Eq. (2) it is easy to derive
the general relationship occurring among three types of molecular den-
sities:

Q=C+y (AS)

In order for the ideal cases of no longitudinal diffusion to be attained
from this intermediate case, let us examine the following two assumptions:
(a) that the longitudinal diffusion of molecules does not occur in solution
in the interstices of the column, and (b) that the longitudinal diffusion of
molecules in solution is carried out independently of the interaction with
crystal surfaces. In general, it is reasonable to assume that the diffusion
cannot occur on the crystal surfaces.
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Assumption (a) can be written simply as
Dtherm =0 (A6)

If Eq. (A6) is substituted into Eq. (A3’), and both Eq. (20) and the relation-
ship
1av
IV =~ B (A7)
(where o is a macroscopic constant representing the pore volume per unit
length of the column and V is the elution volume) are applied, then
o(BSYy 0Q
0 tar =0 (A%)
is obtained. [It should be noted that, by its definition (Eq. 20), L’ represents
the total interstitial volumes involved between the top and a position L
of the column.] This is DeVault’s equation in classical theories of adsorp-
tion chromatography (/6) (see below). Equation (A8) still conserves the
property as the continuity equation for the molecular flux on the column,
the first and the second terms on the left-hand side representing the
divergence of the flux and the time change of the density of the flux,
respectively; time ¢ is transformed into elution volume V, however.
Equation (A8) should represent a chromatographic process occurring
provided there is no longitudinal diffusion in the column.
Assumption (b) means that the distribution of molecules in solution
follows Fick’s second law, which can be represented as
oC a*C
—67 - Dtherm W =0 (A9)

If Eq. (A9) is substituted into Eq. (A3"”) and both Eqgs. (20) and (A7) are

applied, then
B
6( X)
- B i)
M= B o _

oL’ oV
is obtained. This is Wilson’s equation in classical theories of adsorption
chromatography (/5) (see below). Equation (A10) means that, provided
the diffusion of molecules in the interstitial liquid of the column occurs
independently (Eq. A9), then the chromatographic mechanism is also
independent of the molecules in solution, except for the fact that the
divergence of the mean flux or the mean migration rate of molecules on
the column (the first term on the left-hand side of Eq. A10) is governed
by the partition B of molecules in solution, so that the chromatography is
carried out independently of the longitudinal diffusion of molecules in the

0 (A10)
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column, following Eq. (A10). Let us now introduce assumption (a) or Eq.
(A6), which leads to the conclusion that, provided there is no longitudinal
molecular diffusion in the column, the chromatography is carried out
following Eq. (A10). In fact, the only way in which the chromatography
can be carried out without the effect of longitudinal molecular diffusion
in the column should be that the mechanism of chromatography is inde-
pendent of the molecules in solution.

We now have two different differential equations, Egs. (A8) and (A10),
that should represent the idealized chromatographic processes occurring
in the absence of any longitudinal diffusion in the column. Whether or not
these equations are valid depends upon whether or not they are self-
consistent with the physical meanings that are involved in them under the
given experimental conditions.

Let us first examine Eq. (A10) for the case of stepwise chromatography.
Under this experimental condition, Eq. {A10) is self-inconsistent with the
physical meaning of the independence of the chromatographic mechanism
from the molecules in solution (see above). In fact, the second term on the
left-hand side of Eq. (A10) is still related to the interstices of the column;
the situation where the change dx, with time, of the density or the amount
of molecules on the crystal surface is directly related to the change 9V,
also with time, of the elution volume, i.e., the dimensions of the interstitial
volume of the column, but that it is independent of the amount of mole-
cules partitioned in the interstices evidently is contradictory.

Let us examine Eq. (A10) for the case of linear gradient chromato-
graphy. In this instance, molarity m of competing ions in a given section
of the column increases linearly with increase in elution volume V, or
we can write

dm/dV = g’ (All)

where g’ is a positive constant representing the slope of the molarity
gradient of competing ions (expressed in units of molarity per volume).
Therefore, introducing a parameter

s=g'L =gL (A12)*
which has a dimension of molarity, Eq. (A10) can be transformed into

a( B )
— R
- F
M -BY L (A13)

ds om

*¢ (= ag’) is a positive constant representing the slope of the molarity gradient of
competing ions on the column, expressed as the increase in molarity per unit length
of the column (measured from the bottom to the top).



13: 49 25 January 2011

Downl oaded At:

GRADIENT HYDROXYAPATITE CHROMATOGRAPHY. | 353

where B is a function of only m (cf. Eq. Al or A24). In gradient chro-
matography, it is Eq. (A13) rather than Eq. (A10) that has a fundamental
physical meaning. We show now that Eq. (A13) is self-consistent with
the physical meaning which is involved in it, that the chromatographic
mechanism is independent of molecules in solution. The first term on the
left-hand side of Eq. (A13) conserves the physical meaning of the diver-
gence of the flux of molecules on the column in a sense such that the flux
is concerned with an abstract flow of molecules that move along a type of
molarity gradient of competing ions, since s has a dimension of molarity.
The second term is also related only to molarity of competing ions;
molarity m originates in time ¢ in the fundamental equation, Eq. (A3).
However, the molarity of competing ions is an intensive quantity [repre-
senting the “force” that drives sample molecules out of the crystal surface
(to be precise, the quantity being proportional to the ‘““force”; see
Appendix 1)), so that the second term in Eq. (A13) is no longer related to
the interstices themselves of the column with an extensive property. There-
fore the chromatographic mechanism should be independent of molecules
in solution except for the fact that the migration rate of molecules along
the “molarity gradient” of the ions is governed by the partition B of
molecules in solution (the first term on the left-hand side of Eq. Al13).
However, B is a function of molarity m of the ions. B involves a parameter
B that is related to interstices of the column [see Eq. Al (i.e., Eq. A24)
and Eq. A2]. However, 8 is constant throughout the chromatographic
process, so that 8 does not play any role in the above argument.

It should be noted that, although Eq. (A13) represents the chromato-
graphic process, it no longer represents the continuity equation for the
actual molecular flux in the column. Thus Eq. (A13) or Eq. (A10) does
not represent the conservation of the amount of molecules in the inter-
stices, including the crystal surfaces, of the column section, because Eq.
(A13) is no longer concerned with molecules in the interstitial liquid in
the column (see above). Nevertheless, Eq. (A13) conserves the property
of the continity equation for an abstract flux of molecules migrating along
a “molarity gradient” of competing ions (i.e., the gradient of the quantity
s; see above). However, introducing a new parameter C defined as

C=+—1 (Al4)

Eq. (A13) can be rewritten as

1-B
(5¢)
N8B )L % (A13)
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From the similarity of the form of Eq. (A13’) to that of Eq. (A13), it is
possible to consider that C also represents some “density,” and that the
first and the second terms on the left-hand side of Eq. (A13’) represent
the divergence of the flux along the gradient of the parameter m, i.e.,
the molarity gradient in the ordinary sense and the change in “density”
C occurring with a change in the parameter s, respectively. s is now
considered to change with time ¢. Here it is possible to give C a physical
meaning of concentration of molecules in the interstitial liquid of the
column, since C defined by Eq. (A14) is mathematically identical with C
defined by both Egs. (2) and (A4). By extending Eq. (A13") to an equation
in which account is taken of the longitudinal diffusion in the column, the
fundamental differential equation for gradient chromatography can be
obtained. This is Eq. (17) in Ref. 8 which is reproduced as Eq. (A4l).
This equation concerns the abstract molecular flux migrating along the
gradient of molarity m of competing ions (see above; cf. the “Introduc-
tion™).

Let us examine Eq. (A8) for the case of stepwise chromatography.
Equation (8) has been derived by using Eq. (A6), which simply states that
longitudinal molecular diffusion does not occur in the interstices of the
column. [For the derivation of Eq. A10 or Al3 also, the assumption of
no longitudinal molecuiar diffusion in the interstices of the column (Eq.
A6) apparently is used. However, this assumption was introduced after
Eq. A9 had been introduced (see above). As a result, Eq. A6 does not
mathematically participate in the derivation of Eq. Al10. As far as Eq.
A10 is concerned, the condition of no longitudinal diffusion in the column
can be derived even without the assumption of no longitudinal diffusion
in the interstices of the column. This condition is derived through the
logic that the state of no longitudinal diffusion should be achieved provided
the chromatographic mechanism is independent of the molecules in the
interstices of the column since, on the crystal surfaces, there is no diffusion.
This mechanism spontaneously precludes the possibility of the existence
of longitudinal molecular. diffusion in the column.] Now the statement
of no longitudinal molecular diffusion in the interstices of the column is
a priori inconsistent with the fundamental assumption of chromatography
that the mobile and stationary phases coexist on the column. This is
because the coexistence of the two phases is achieved through molecular
diffusion itself, and it is physically impossible to separate the longitudinal
diffusion from the total diffusion and to fix only the former (without
destroying the chromatographic mechanism). It should be noted, however,
that if the migrating band of molecules on the column has an infinite
width, the effect of the longitudinal diffusion should be canceled out in the
interior of the band, and Eq. (A6) should apparently be fulfilled. It would
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therefore be possible to imagine that the molecular band under considera-
tion is part of the band with infinite width; the migration of this part can
be described by Eq. (A8). [At least with the quasi-static process (see the
“Introduction™) it is possible to consider that the actual column is part
of the imaginary column with infinite length; cf. Appendix III]). The
problem is now whether or not the assumption of the existence of a
molecular band with infinite width is self-consistent with Eq. (A8). It can
be shown on the basis of Eq. (A8) that, at least when B is constant (which
is the case with small sample loads), then the width of the band should
be maintained constant during the chromatographic process. This enables
us to assume, during the whole process of chromatography, a band with
a width that is larger than any given constant finite value, i.e., the band
with an infinite width.

Finally, let us examine Eq. (A8) for the case of gradient chromato-
graphy. In this instance, Eq. (A8) can be transformed into

HBQ) 0Q

s + = 0 (A15)

On the basis of Eq. (A15) it can be shown that, at least when B is a function
of only m and when B increases monotonicaily with an increase of m
(Eq. Al or A24 fulfills these two conditions), then the width of the band
should decrease monotonically toward zero with the chromatographic
process, Therefore it is impossible to assume the existence of the band
with a width that is larger than any fixed finite value during the chromato-
graphic process.

Hence it can be concluded that, provided there is no longitudinal
diffusion in the column, it is DeVault’s equation, Eq. (A8), that is valid
in stepwise chromatography, whereas it is a Wilson-type equation, Eq.
(A13) or (A13%), that is valid in gradient chromatography. A direct
mathematical proof for this statement is given in both the Theoretical
section in Ref. 7 and the Theoretical section in Ref. 8.

As B is constant with stepwise chromatography with small sample
loads (see above), introducing a parameter

W = BV (A16)
Eq. (A8) can be rewritten more simply as
o, m
oL oW
With small loads when the band with an infinitesimal width is formed

initially (i.e., when ¥V or W = 0) at the top (L’ = 0) of the column, the
initial condition for Eq. (A8") can be written, by using a delta-function, as

0 (A8)
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Qw0 = (L) (A7)
Under this condition, Eq. (A8’) has a solution
Q=56 — W) (A18)

Due to the property of the delta-function, Eq. (A18) only shows symboli-
cally that the band with a very small width is formed at a longitudinal
position L’ or L (see Eq. 20) on the column at which the relationship

L'=W (A19)

L = BV (A19')
or

L = BV, (A19)

is fulfilled (for Eq. A19”, see Eq. 48). In other words, a sharp chromato-
graphic peak is obtained at reduced elution volume

Vo = L/B (A19™)
by using a column with length L.
As B is a function of m with gradient chromatography with small loads
(see above), introducing a function
'
B

r(m) = j‘ —1‘—_—3 dm (A20)

where m;,, represents the initial value of m at the beginning of the molarity
gradient, Eq. (A13) can be rewritten more simply as

L (A13")

With small loads when the band with an infinitesimal width is formed
initially at the top of the column [where L' =0, ie., s = 0 (Eq. Al2)
and m = m,, (Eq. A20)], the initial condition for Eq. (A13") can be
written as

Xe=o = &(5) (A21)
Under this condition, Eq. (A13”) has a solution
x=06(s—r) (A22)

This means that the band of molecules with a very small width is formed
at a longitudinal position L’ or L on the column at which the relationship

s = r(m) (A23)

is fulfilled. The partition By, of sample molecules in solution in system
oV is given by Eq. (Al). In the absence of longitudinal diffusion in the
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column, it is sufficient to consider a column section instead of §V; By,
and m;, in Eq. (A1) can be replaced with B and m, respectively. Hence
we have

1
1+ qgem+ )™~

By using Eqs. (A24) and (A20), Eq. (A23) can be rewritten as

B(m) =

(A24)

1 . .
m= —q—)—,{[(x' + Do'gs + (p'm, + 1FHVETD — 13 (A25)

Equation (A25) gives, as a function of s, the molarity m of competing
ions at which the sharp chromatographic peak is eluted out of the column.

Equation (A25) is the fundamental equation that is used in earlier works
(2, 5, 6) which originally was derived as Eq. (15) in Ref. 2 by using a
different method. Even without awaiting the theory in which the longitu-
dinal molecular diffusion is taken into consideration, it is reasonable to
assume that the elution molarity of a mean part of the actual chromato-
graphic peak can be represented by Eq. (A25). This has been verified
experimentally [2, 6 (Appendix IV), 7 (Theoretical section F); see also
Appendix II in Ref. 9].

Historically, it is Eq. (A10) that was derived for the first time by Wilson
(15) for the purpose of describing the elution process in stepwise chro-
matography. The method of derivation is different from that shown in
this Appendix (or originally in Ref. 7), and the equation is expressed
somewhat differently in Ref. 15. In Ref. 15 it is simply assumed (a) that
an instantaneous equilibrium is attained between the solution and the
adsorbed material on the column, and (b) that the effect of the longitudinal
diffusion in the column is negligible. It is also assumed that the interstitial
volume per unit length of the column is negligible. Under this assump-
tion, Eq. (A10) might represent a continuity equation for the actual
molecular flux in the column. DeVault (/6) modified Wilson’s equation
(Eq. A10) in order for it to behave as the continuity equation (for the
actual flux) even when the interstitial volume of the column has a finite
value; this is Eq. (A8). In Ref. 16, Eq. (8) is expressed somewhat differ-
ently however. These theories, with a further theory developed by Weiss
on the basis of Wilson’s equation (/7), are categorized as classical theories
of adsorption chromatography. However, all these theories are valid only
for stepwise chromatography.

APPENDIX 111
When dealing with stepwise chromatography, the longitudinal dis-
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tribution of molecules on a column or the shape of the molecular band
migrating on the column can be represented as a sum of molecular bands
migrating on respective microcolumns and as a function of elution volume
V or the parameter W (Eq. A16). In parallel with Steps 1-3 in the “Theo-
retical” section, let us here calculate (1') the contribution of the band of
molecules migrating on a column 1 to the total band on the actual cofumn
as a function of local elution volume V, 61 on the column A or the parameter

W, = BV, (A26)

for each 2. by assuming that there is no thermodynamic longitudinal diffusion,
(2') the distribution of the flow among different microcolumns, and (3') the
relationship between the local elution volume V, 8J, i.e., the parameter
W. and the actual elution volume V, i.e., the parameter W. Since W, can be
considered as a function of L' (see below), the macroscopic molecular
density Q on the actual column can be represented as a function of L’ as

L aww)
@= j %D

where Q, represents the molecular density in the interstices, including the
crystal surfaces, on the column A. L', L}, and 3(L}) are defined by Egs.
(20), (19), and (21), respectively. [ W, is different from V, only by a constant
factor B (Eq. A26). V', can be considered as a function of L} because,
in a column 4, the elution volume ¥, 61 should depend upon the apparent
total interstitial volumes L} 1. L) is a function of L (Eq. 19), and L can be
considered as a function of L’ (Eq. 20). Therefore, W, can be considered
as a function of L'. The physical meaning of Eq. (A27) can be understood
from analogy with the meaning of Eq. (5).]

Let us perform the calculation of Q, (Step 1'). Through a procedure
similar to the derivation of Eq. (AS8), but with some attention to the
fact that the pore volume per unit length of the column A depends micro-
scopically upon the longitudinal position, DeVault’s equation, representing
the idealized elution process occurring on a column A provided there is
no thermodynamic longitudinal diffusion,

HB) 09,

3L, + 7, = 0 (A28)
can be derived. It can be assumed that B, is virtually independent of
the microscopic variation in pore volume per unit length of the column A
[see the section entitled “Step 1: Calculation of f,(m,, 5;)]; this means
that B, in Eq. (A28) can be replaced by the macroscopic parameter B
(Eq. 2), which is independent of both L and V. Hence, by using Eq.
(A26), Eq. (A28) can be rewritten as

(L) dL; (A27)
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0, 0,
ar, " aw,
which can be compared with Eq. (A8").
With small sample loads when the band of molecules with an infinitesi-
mal width is formed initially at the top of the column, or under the initial
condition

0 (A29)

Q=0 = 0(L3) (A30)
Eq. (A29) has a normalized solution
Q, =4L;, — W) (A31)

(cf. Egs. A17 and A18). Equation (A31) represents the contribution of the
molecular band on a column 1 to the total band on the actual column as
a function of W, when L', is given.

The calculation of 9(L',) (Step 2') has already been done (see Eq. 21).
Now, if both Egs. (A31) and (21) are substituted into Eq. (A27),

— —[Wa(L')—-L'}2/40L" dW’v(L')
Q=TT = (A32)
is obtained.

Let us perform the calculation in Step (3’). Instead of directly calculating
the function W (L', W), it is sufficient to give a proof for the following
relationship:

1

\me-(wﬁwzmou dW,l (E S(Wl) dW,l)
B ¢47]zeye‘““'>2/4“' dLy (= (L) dLy)
- \/4710 e T dLy
- \/4719 e LTI AL (A33)

The equality between the extreme left- and the extreme right-hand side in
Eq. (A33) gives the function W,(L', W) in an implicit form. Now, let us
give a proof for Eq. (A33). Thus, first, W, 64 has a physical meaning
of a sum of interstitial volumes involved between the top and a position of
the column A through which the molecular band with an infinitesimal width
passes during the whole process of chromatography. This is evidently equal
to the sum L} 6/ of the interstitial volumes involved between the top and
this position of the column A. Thus the first equality in Eq. (A33) has
been obtained. Second, due to its definition, (L)) dL} can represent a
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probability that, when the center of the actual molecular band is at position
L on the column or the position at which the “distance” from the column
top is equal to L’ (measuring as a sum of interstitial volumes), then a mole-
cule exists at positions where the ‘““distance” to the position L are between
Ly — L'l and |Ly — L'} + dLyj2. L), — L' > 0 and L} — L' < O repre-
sent the cases when the position of the molecule is closer and less close to
the column top than the position L, respectively. This is because, on a
column A, the total interstitial volumes involved between the position L
and the position of the molecule under consideration should be equal to
(L — LY 64 and (L’ — L)) 64, neglecting the infinitesimal fluctuation
(dL’/2) 6], respectively. The probabilities of the occurrence of both these
volumes (equal to [L; — L’| 62) should be equal to the probabilities of
the appearance of a molecule at the two positions on the actual column
where the ‘“distance” to the position L are equal to |L}, — L'|, respectively.
Third, it is possible to give W a physical meaning of the sum of interstitial
volumes involved between the top and a longitudinal position of the
actual column through which a molecular band with an infinitesimal width
passes during the whole process of chromatography provided there is no
longitudinal diffusion because, under this hypothetical condition, V, should
be equal to V, and Eqs. (A16) and (A26) show that W, is equal to W.
As molecules at the center of the band should apparently stay at the
same position as in the absence of longitudinal diffusion, W can also
represent the sum of interstitial volumes involved between the center of
the band, i.e., the position L defined in the second step of the consideration,
and the column top. This means that the parameter L’ involved in the
function 9(L%) (see Eq. 21) can be replaced with W. Thus the second
equality in Eq. (A33) has been obtained. Lastly, it is possible to denote by
L' the sum of interstitial volumes involved between the column top and
the position of any part of the actual molecular band. By using this new
notation, the factor L), — W [or the factor L) — L’ in the function 3(L}),
given the physical meaning in the second step of the consideration] can be
replaced with —(L' — W). The minus sign is necessary because, when
L; > L' and L) < L' (in the old expression), the “‘position” L' (in the
new expression) should be closer and less close to the column top than
the “position” W, respectively, the symbol W being common to both the
old and new expressions. However, the value of 3 does not change if the
factor — (L' — W) is replaced with L' — W. This means that the factors
L’ and dL} appearing in the third term in Eq. (A33) can be replaced directly
with L’ and dL’, respectively. Thus the last equality in Eq. (A33) has been
obtained.

If the equality between the extreme left- and the extreme right-hand
side in Eq. (A33) is substituted into the right-hand side of Eq. (A32), then
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1 ’ 2

Q= :me“" ~W)z/aew (A39)
is obtained, which can be compared with Eq. (A18). It is evident that, at
a limit of 6 — 0, Eq. (A34) reduces to Eq. (A18). It can be seen in Eq.
(A34) that, if Q is considered as a function of L’, Q represents a Gaussian
distribution. W represents a sum of interstitial volumes involved between
the column top and the longitudinal position at which the center of the
molecular band exists (see above). The theoretical chromatogram for
a column of length L (denoted by f,) can now be represented as the con-
centration C (= f,) of molecules in the interstitial liquid within the last
section at the bottom of the column of length L, and as a function of
elution volume V as

B s
fL(V) = \/4Tc0V€ (L~ BV)2/40BV (A35)

It is often more convenient to represent the chromatogram in terms of
Vo (Eq. 48) rather than of V. In this instance, writing f,° instead of f,,
we have

B
° = ~(L~BVo)?/460BVo ’
fL (VO) \/47[00V0e (A35)

When the column has a macroscopic length, both f, and f,° are nor-
malized such that

[ Ly dv = f T rou Ve v, = 1 (A36)

Equation (A34) can also be obtained as a solution of the continuity
equation for the molecular flux on the column (Eq. 4), or the continuity
equation represented by using, instead of time f, elution volume V as
a variable. Thus by introducing the parameter

aD
8= l—ﬂ_g (A37)
o dt
and by using Eqs. (20) and (A7), Eq. (4) can be rewritten as
o oQ
div,. (BQ — 8B grad,. Q) + F7an 0 (A38)

where the arrow shows that the term under the arrow is a vector.

We confirm below the fact that 8 (Eq. A37) is constant. This means that,
in Eq. (A38), time ¢ is not involved as the parameter. This latter is necessary
in order for Eq. (A38) to be compatible with the experimental fact that
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both the shape of the chromatogram and the elution molarity are inde-
pendent of the flow rate (see the “Introduction”). An equivalence of the
argument below has already been made in Ref. 7. Thus it is possible to give
« (see Eq. A7) a physical meaning of the total area, projected on the
surface of the vertical column section, of the interspaces among HA
crystals being packed, i.e., the total area for the part of a column section
through which the solution can pass in the chromatographic process.
o is macroscopically constant. Fick’s first law shows that the amount of
molecules, dQ/dt, that pass through the area « by diffusion (caused by the
microscopical heterogeneity in o) per unit length of time should be
proportional to the density gradient, —grad, Q, with a proportionality
constant aBD. [Fick’s first law usually is stated in such a way that the
amount of molecules that pass through a unit area by diffusion in unit
interval of time, (dQ/dt)/a, or the molecular flux should be proportional
to the density gradient, —grad; Q, with a proportionality constant BD.
This statement is equivalent to the statement made above. Cf. the explana-
tion of the symbol D in Eq. 1]. The quantity dQ/dt should also be propor-
tional to the mean flow rate |v] of molecules (see Eq. A7), because the
variation in the flow rate (by which the diffusion under consideration
occurs) around the mean flow rate of molecules should be proportional
to the mean flow rate (at least in the range of the flow rate examined
experimentally; see the “Introduction”). This means that the propor-
tionality constant in Fick’s law or the quantity «BD should be proportional
to the mean flow rate |v| or that the quantity aD should be proportional to
the mean flow rate (dV/dt)/a of the solvent, thus giving # a physical
meaning of the proportionality constant between aD and (dV/dt)/o. 1t
will be understood later that the parameter 6 defined by Eq. (A37) is
identical with 6 introduced in Eq. (21).

By introducing the parameter W (Eq. A16), Eq. (A38) can be rewritten as

QK

Os:=ar taw

(A39)
In order to find the initial condition for Eq. (A39), the following con-
sideration is necessary: With small sample loads when a narrow band is
formed initially at the top (L = 0) of the column, this initial state could
be replaced approximately with a hypothetical state in which a band with
an infinitesimal width is formed at a position (L = 0) on the column with
an infinite length. This column extends even in the minus direction beyond
the origin. This approximation would be justified by the fact that the
actual longitudinal diffusion of molecules in the column is essentially due
to the heterogeneity in the flow rate, so that there should be hardly any
flow of molecules that proceeds backward on the column. The mathemati-
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cal calculation on the basis of this approximation might predict, however,
that a minor part of the molecular band extends over the column top
immediately after the development of molecules has begun. Therefore it
would be at least after the distance between the center of the molecular
band and the column top has reached a macroscopic value that the
correspondence between the theory and the experiment can be expected.
It can be assumed that, in this situation, the shape of the theoretical
peak receives only a slight influence from the approximation of the initial
state of the molecular band (see above). To calculate the chromatogram
with a very short column, another approximation would be required.
(For this calculation, a type of initial condition such as applied in Ref. 4
or in Appendix Il in Ref. 7 might be useful.) The concentration of mole-
cules in the interstitial liquid at position L on a column with infinite length
should be virtually equal to the concentration in solution that has just
been eluted out of the column with finite length L. This is because the
probability of the occurrence of the flow that proceeds backward on the
column should be negligible (see above). Hence the theoretical chromato-
gram for a column of length L can be represented by the concentration
of molecules in the mobile phase at position L on the hypothetical column
with infinite length as a function of elution volume V.

Now, when a narrow band of molecules is formed initially at the top,
L = 0, of the column, the initial condition for Eq. (A39) can be written,
by using a delta-function, as

Qw-0 = (L) (A40)

Under the condition of Eq. (A40), Eq. (A39) has a solution given by
Eq. (A34).

The fact that the same equation, Eq. (A34), can be obtained by using two
different methods demonstrates that the two methods are equivalent;
the diffusion parameter 8 defined by Eq. (A37) is identical to € intro-
duced in Eq. (21).

In Ref. &8 it is shown that Egs. (36) and (34) or Eqgs. (36") and (34) that
represent the chromatogram in gradient chromatography are given as a
solution of the continuity equation for an abstract molecular flux (cf.
Appendix II):

1 = BGs, m) = C ac
di ,,,[ B, m) — BGs, m) grad,, _B(s, m)] + % = 0 (A4D
under the initial condition given by
lim Q= dm - m,,) (A42)
s=++0
ma=min

where
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E=g'0=g0, (A43)

Equation (A41) (corresponding to Eq. A38 in stepwise chromatography)
can be compared with Eq. (A13") (corresponding to Eq. A8 in stepwise
chromatography). (For details, see Ref. 8.)
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